Investigation of a sudden increase in collectivity at $^{170,172}W^*$

K. E. Ide¹, V. Werner¹, R. Abels², U. Ahmed¹, D. Bittner², T. Biesenbach², A. Blazhev², A. Esmaylzadeh², C. Fransen², J. Jolie², H. Kleis², C.-D. Lakenbrink², M. Ley², H. Mayr¹, M. Müllenmeister², C. M. Nickel¹, R. Novak², A. Pfeil², N. Pietralla¹, J. Roob², F. von Spee², T. Stetz¹, T. Sültenfuß², and R. Zidarova¹

Institute for Nuclear Physics, Dept. of Physics,

Technische Universität Darmstadt, D-64289 Darmstadt, Germany and

Institute for Nuclear Physics, Universität zu Köln, D-50937 Köln, Germany

The rare-earth isotopes represent one of the best-studied regions of the nuclear chart with respect to quadrupole deformation and, thus, provide a testing ground for the development of nuclear structure and collectivity. The $R_{4/2}$ value and the $B(E2; 2_1^+ \to 0_1^+)$ value serve as indicators for nuclear structure. Especially the observables for the isotopes around N = 90 [1, 2] undergo a rapid change between the theoretical limits for spherical and axial deformation. However, the tungsten isotopic chain offers an astonishing anomaly. The data imply a smooth evolution of the $R_{4/2}$ value with increasing neutron number, while the literature data on $B(E2; 2_1^+ \to 0_1^+)$ values suggest a sudden change in deformation around N = 96, 98.

We conducted an experiment to investigate the absolute yrast E2 transition strengths of 170 W applying a lifetime measurement [3]. The B(E2) values exhibit an X(5)-like character, which fits to its $R_{4/2}$ value of 2.95 being close to the limit representing the X(5) symmetry [4] of 2.90 and having a P factor of ~ 5 . To extend our investigation to N=98, we performed a lifetime measurement of yrast states of 172 W at the 10 MV FN-tandem accelerator at the University of Cologne. The new Cologne CATHEDRAL (Cologne Coincidence detector Array at the Tandem accelerator for High Efficiency Doppler shift Recoil and LaBr fast-timing measurements) spectrometer was used together with the Cologne plunger device [5] to simultaneously apply the fast-timing and the recoil distance Doppler-shift (RDDS) methods to cover a wide range of lifetimes.

distance Doppler-shift (RDDS) methods to cover a wide range of lifetimes.

The lifetimes of the 2_1^+ and 4_1^+ states of 172 W were determined with the fast-timing method. The lifetimes of higher-lying states were determined with the RDDS method. The results of 170 W and 172 W are compared to the confined β -soft rotor model [6].

- [1] R. F. Casten, Nat. Phys. 2 (2006) 811.
- [2] R. F. Casten, Prog. Part. Nucl. Phys. **62** (2009) 183.
- [3] K. E. Ide et al., LNL report 2019 (2020).
- [4] F. Iachello, Phys. Rev. Lett. 87 (2001) 052502.
- [5] A. Dewald, O. Möller, and P. Petkov, Prog. Part. Nucl. Phys. 67 (2012) 786.
- [6] N. Pietralla and O. M. Gorbachenko, Phys. Rev. C 70 (2004) 011304.

^{*}This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the Research Training Group 2128 Accelence and Project-ID 499256822 - GRK 2891 'Nuclear Photonics' and by the German Federal Ministry of Education and Research (BMBF) under Grant No. 05P21RDCI2.